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Introduction: intention

• Exact closed enumeration formulae.

• Unrooted maps and related objects, such as non-equivalent
coverings of surfaces and subgroups of finitely gen. groups.

• Planar (i.e. spherical) maps and maps on other
orientable surfaces.

� Unweighted, i.e. ”weighted” by 1, rather than 1/|Aut|, etc!..

� A brief survey. Phenomenologically.

Selectively: initial and characteristic examples,

not necessarily latest or most general.

� Ordered by involved arithmetic functions. Two parts:

(I) classical multiplicative functions and

(II) a multivariate function introduced recently. In more detail.
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Introduction: basic definitions

• Unrooted (maps) = non-isomorphic, = unlabeled,
considered up to (sense-preserving) symmetries.

� Rooting a map: (after Tutte): distinguishing one half-edge

(the root) so as to deprive the map all non-trivial automorphisms.

The root is known under diverse names, and there are other

equivalent definitions (say, via a distinguished corner)

� An arithmetic function f(n) is called multiplicative

if f(1) = 1 and

f(km) = f(k)f(m)

whenever GCD(k;m) = 1.

f(n) is determined by the values f(p

a

) for all prime p and a � 1.
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Enumeration: unrooted/unlabeled

Unrooted maps/unlabeled objects.
Typical way: enumeration in terms of rooted/labeled ones.
Burnside/Redfield/Pólya. Recall:

Burnside’s Lemma (the name is improper, but. . . ).

|G\\Y | =
1

|G|

(
|Y |+

∑
g∈G, g ̸=1

|Yg|
)

G\\Y : the set of orbits (“unlabelled” objects)
of a finite group G in its action on a set Y .

Yg: the set of objects in Y (“labelled”) fixed by g.

• Reduction to separate elements of the group.

� Particularly efficient when the group G acts semi-regularly

�

.

Just for maps, coverings,. . . [

�

cycles of equal length in every g 2 G]
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Enumeration: rooted/labeled

• Rooted maps (equivalent to ‘labeled’ ones in terms of
enumerative combinatorics). Much easier to enumerate.

• Very specific and well developed techniques.
In many important cases formulae are remarkably simple.
� Example: A

0

(n):=#(rooted n-edged planar maps). Maps

without restrictions: multiple edges and loops are allowed.

[W.Tutte, 1963]:

A

0

(n) =

2 � 3

n

(2n)!

n! (n+2)!

� Related rooted objects (other than maps) are enumerated

effectively as well, although often with not so simple formulae.

Diverse techniques.
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I. CLASSICAL MULTIPLICATIVE FUNCTIONS

Euler totient function: necklaces, plane trees, etc.

ϕ(n):=#(units of Cn). ϕ(n) = n
∏

p|nprime
(1− p−1).

• As a multiplicative function:

ϕ(pa) = pa−1(p− 1) p prime, a ≥ 1

� Trivially arises for counting objects up to the action

of cyclic groups C

n

. E.g.,

L

k

(n):=#(necklaces with n beads of k types up to rotations).

L

k

(n) =

1

n

X

mjn

�

�

n

m

�

k

m

� Plane trees. Similarly. Less trivial.

� Chord diagrams. Similarly. Even less trivial in general. . .
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Euler totient function: unrooted arbitrary planar maps

A+(n):=#(unrooted planar maps with n edges). Sense-preserving: +.

Theorem [VL, 1981].

A+(n)=
1

2n

[
A′(n)+

∑
m<n
m|n

ϕ

(
n

m

)(m+2

2

)
A′(m)

]
+


n+3

4
A′

(
n−1

2

)
, n odd

n−1

4
A′

(
n−2

2

)
, n even

� The first result of this form. Most significant (and unexpected!)

was the very existence of such a simple closed formula.

� A

0

(n):=#(all rooted planar maps). Tutte’s formula, repeatedly:

A

0

(n) =

2 � 3

n

(2n)!

n! (n+2)!

=

2 � 3

n

(n+1)(n+2)

�

2n

n

�

; n � 0

� A technique based on quotient maps (= orbifolds) with respect

to rotations of order `: spheres with two `-poles.

` = 2: boring technical complications (one or two half-edges).

� Reproved and generalized later. Rather elementary presently.
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Euler totient function: unrooted non-separable planar maps

B+(n):=#(unrooted non-separable (= 2-connected) planar maps).
Theorem [VL–T.Walsh, 1983].

B+(n)=
1

2n

[
B′(n)+

∑
m<n
m|n

ϕ

(
n

m

)(3m−1

2

)
B′(m)

]
+


n+1

4
B′

(
n+1

2

)
, n odd

3n−4

16
B′

(
n

2

)
, n even

� A much more unexpected reductive formula because

quotient maps (up to 2 poles) are not necessarily non-separable.

� B

0

(n):=#(rooted non-separable planar maps). [W.Tutte, 1963]:

B

0

(n) =

2(3n� 3)!

n! (2n� 1)!

=

4

3(3n� 2)(3n� 1)

�

3n

n

�

; n � 1

� Further. Eulerian planar maps, loopless,. . . : similar formulae.

Again: despite that quotient maps do not generally preserve the

underlying property (even valency,. . . ). Partially explained.
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Möbius function: subgroups of the free group

µ(n): the Möbius inversion. (Recall: µ(n) is the multiplicative function
determined by µ(p) := −1, µ(pa) := 0 for p prime and a > 1.)

Fr:= the free group of rank r ≥ 2,
NFr(n):=#(conjugacy classes of subgroups of index n in Fr). Also:

=#(transitive permutation r-tuples up to joint conjugacy);
=#(non-equivalent n-fold coverings of a bordered surface).

Theorem [VL, 1971].

N

F

r

(n) =

1

n

X

mjn

M

F

r

(m)

X

dj

n

m

�

�

n

md

�

d

(r�1)m+1

� M

F

r

(n):=#(n-index subgroups of F

r

). [M.Hall, 1949]:

M

F

r

(n) = n �n!

r�1

�

n�1

X

t=1

(n� t)!

r�1

M

F

r

(t); n > 1; and M

F

r

(1) = 1:

� Again: unexpectedly simple formula. Reproved subsequently:

R.Stanley, G.Jones,. . . Admits a smarter representation: later.
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Möbius function: smooth coverings of surfaces

Sγ: a closed orientable surface of genus γ.
NSγ(n):=#(non-equivalent smooth n-sheeted coverings over Sγ).
Theorem [A.Mednykh, 1982] (the Hurwitz problem for smooth cov.).

N

S




(n) =

1

n

X

mjn

M

S




(m)

X

dj

n

m

�

�

n

md

�

d

(2
�2)m+2

� M

S




(n):=#(n-index subgroups in the fundamental group of S




).

M

S




(n) is expressed in terms of irreducible characters

of the symmetric group S
n

[AM, 1982]. . .

� Subsequently has been generalized to non-orientable surfaces and

branched coverings (less transparently). A lot of results.

� Proof: initially heavy and rather artificial. Presently this is

a particular case of a much more general and clear result!
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Möbius function: smooth coverings of surfaces

Sγ: a closed orientable surface of genus γ.
NSγ(n):=#(non-equivalent smooth n-sheeted coverings over Sγ).
Theorem [A.Mednykh, 1982] (the Hurwitz problem for smooth cov.).

NSγ(n) =
1

n

∑
m|n

MSγ(m)
∑
d| nm

µ

(
n

md

)
d(2γ−2)m+2

• MSγ(n):=#(n-index subgroups in the fundamental group of Sγ).
MSγ(n) is expressed in terms of irreducible characters
of the symmetric group Sn [AM, 1982]. . .

� Subsequently has been generalized to non-orientable surfaces and

branched coverings (less transparently). A lot of results.

� Proof: initially heavy and rather artificial. Presently this is

a particular case of a much more general and clear result!

9-a
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Coverings vs subgroups

Recall:
For connected coverings of a manifold M
with the fundamental group π1(M)

• its pointed (rooted) n-fold coverings bijectively correspond to
n-index subgroups of π1(M)

• its n-fold coverings up to equivalence bijectively correspond to
n-index subgroups of π1(M) up to conjugacy.

10



Non-conjugate subgroups vs epimorphisms onto Cm

NG(n):=#(conjugacy classes of n-index subgroups of group G).

Theorem [AM, 2006]. For any finitely generated group G,

NG(n) =
1

n

∑
m|n
mk=n

∑
H<
k
G

|Epi(H,Cm)|

H <
k
G denotes summing over subgroups of index k,

|Epi(H,Cm)|:=#(epimorphisms of H onto cyclic Cm)

� Clarifies everything! Easily calculated for �

1

(S), etc.

Lemma [G.Jones, 1995]. If jHom(H;C

m

)j:=#(homomorphisms),

jEpi(H;C

n

)j =

X

djn

�

�

n

d

�

jHom(H;C

d

)j

Corollary. For a free group F

r

; jEpi(F

r

; C

n

)j =

P

djn

�

�

n

d

�

d

r

:
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Non-conjugate subgroups vs epimorphisms onto Cm

NG(n):=#(conjugacy classes of n-index subgroups of group G).

Theorem [AM, 2006]. For any finitely generated group G,

NG(n) =
1

n

∑
m|n
mk=n

∑
H<
k
G

|Epi(H,Cm)|

H <
k
G denotes summing over subgroups of index k,

|Epi(H,Cm)|:=#(epimorphisms of H onto cyclic Cm)

• Clarifies everything! Easily calculated for π1(S), etc.

Lemma [G.Jones, 1995]. If |Hom(H,Cm)|:=#(homomorphisms),

|Epi(H,Cn)| =
∑
d|n

µ
(n
d

)
|Hom(H,Cd)|

Corollary. For a free group Fr, |Epi(Fr, Cn)| =
∑
d|n

µ
(
n
d

)
dr.
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Jordan totient functions: definition

ϕk(n):=#(k-tuples jointly coprime to n).
Denoted often Jk(n).

ϕk(n) := nk
∏

p|n prime

(1− p−k), k ≥ 0

• Defined as a multiplicative function:

ϕk(p
a) := pk(a−1)(pk − 1), p prime, a ≥ 1

• In particular, ϕ1 = ϕ (Euler totient).
In general, ϕ(n)| ϕk(n), k ≥ 1.

Proposition.

�

k

(n) =

X

djn

�

�

n

d

�

d

k

� Easy. Is sometimes used as the definition of �

k

(n).
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∏
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• Defined as a multiplicative function:

ϕk(p
a) := pk(a−1)(pk − 1), p prime, a ≥ 1

• In particular, ϕ1 = ϕ (Euler totient).
In general, ϕ(n)| ϕk(n), k ≥ 1.

Proposition.

ϕk(n) =
∑
d|n

µ

(
n

d

)
dk

• Easy. Is sometimes used as the definition of ϕk(n).
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Jordan totient functions: free groups and coverings, revisited

Recall for the conjugacy classes of subgroups of Fr:

NFr(n) =
1

n

∑
m|n

MFr(m)
∑
d| n

m

µ
( n

md

)
d(r−1)m+1

• As we just saw:
∑
d| nm

µ
(
n
md

)
d(r−1)m+1 = ϕ(r−1)m+1

(
n
m

)
.

Therefore

N

F

r

(n) =

1

n

X

mjn

�

(r�1)m+1

�

n

m

�

M

F

r

(m)

– the very first enumeration result with Jordan’s functions.

� Such a considerable rôle of the Jordan function in this context

has been realized (a simple observation) only recently [VL, 2003].

Rather popular presently.

� Similarly: non-equivalent smooth coverings N

S




(n), etc.
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Jordan totient functions: variations

Modified “odd” Jordan totient function:

ϕodd
k (n) := nk

∏
p|n

p odd prime

(1− p−k), k ≥ 0

• Defined as a multiplicative function:

ϕodd
k (pa) := ϕk(p

a), p odd; ϕodd
k (2a) := 2ka

(For comparison: ϕk(2a) = 2k(a−1)(2k − 1).)

• ϕodd
k (n) =

∑
d|n

n/d odd

µ
(
n
d

)
dk

� �

odd

k

(n) arises often in counting maps/coverings on

non-orientable surfaces, or up to reflection [RN–AM &Co, 2008],

or so-called circular maps [M.Deryagina, 2013].

� Also �

even

k

(n) . . . Less significant.
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∏
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n/d odd
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(
n
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)
dk

• ϕodd
k (n) arises often in counting maps/coverings on

non-orientable surfaces, or up to reflection [RN–AM &Co, 2008],
or so-called circular maps [M.Deryagina, 2013].

• Also ϕeven
k (n) . . . Less significant.
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Jordan functions: subgroups of F2 and dessins d’enfants

r := 2. Free gr. F2. Recall: NF2(n) = 1
n

∑
m|n

ϕm+1

(
n
m

)
MF2(m), n ≥ 1.

NF2(n)=#(transitive pairs of permutations up to joint conjugacy).
=#(non-isomorphic dessins d’enfants (aka hypermaps)).

• The initial numerical values: 1, 3, 7, 26, 97, 624, 4163,. . .
(A057005 in the On-Line Encyclopedia of Integer Sequences).
� “7” for n = 3 edges (in a bipartite representation):

.

[Pic.: L.Zapponi, Not. AMS, v.50, 2003]
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Jordan functions: subgroups of F2 and dessins d’enfants

r := 2. Free gr. F2. Recall: NF2(n) = 1
n

∑
m|n

ϕm+1

(
n
m

)
MF2(m), n ≥ 1.

NF2(n)=#(transitive pairs of permutations up to joint conjugacy).
=#(non-isomorphic dessins d’enfants (aka hypermaps)).

• The initial numerical values: 1, 3, 7, 26, 97, 624, 4163,. . .
(A057005 in the On-Line Encyclopedia of Integer Sequences).
• “7” for n = 3 edges (in a bipartite representation):

12

3

12

3

Figure 1. The dessins with three edges. The cyclic ordering at each
vertex is indicated geometrically. The last two are distinct because
of different cyclic orders at the bottom vertex—(1,3,2) against
(1,2,3) . [Pic.: L.Zapponi, Not. AMS, v.50, 2003]
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Dedekind totient function: cyclic regular dessins d’enfants

ψ(n). Related to Jordan functions: ψ(n) := ϕ2(n)
ϕ(n) . Equivalently:

ψ(n) := n
∏

p|n prime

(1 + p−1)

• Defined as a multiplicative function:

ψ(pa) := pa−1(p+1), p prime, a ≥ 1

� A dessin [d’enfant] D is called cyclic regular if

the group Aut(D) is cyclic and acts regularly on the edges.

R(n):=#(non-isomorphic cyclic regular dessins with n edges).

Theorem [R.Nedela & Co, 2014].

R(n) =  (n)

� The very first appearance of Dedekind’s psi in this context.
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ψ(n). Related to Jordan functions: ψ(n) := ϕ2(n)
ϕ(n) . Equivalently:

ψ(n) := n
∏

p|n prime

(1 + p−1)

• Defined as a multiplicative function:

ψ(pa) := pa−1(p+1), p prime, a ≥ 1

• A dessin [d’enfant] D is called cyclic regular if
the group Aut(D) is cyclic and acts regularly on the edges.

R(n):=#(non-isomorphic cyclic regular dessins with n edges).

Theorem [R.Nedela & Co, 2014].

R(n) = ψ(n)

• The very first appearance of Dedekind’s psi in this context.
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Sum/number of divisors: coverings of the torus/Klein bottle

Two more multiplicative functions. Exclusive applications.

Theorem. [AM, 1988]. For unrooted (connected) coverings
of the (2-dim) torus T and the Klein bottle K:

NT (n) = σ(n)

NK(n) = d(n) if n is odd

NK(n) = (5d(n/2) + σ(n/2))/2 if n ≡ 2 (mod 4)

NK(n) = . . . if 4|n
where

σ(n) :=
∑
d|n

d (the sum of divisors)

d(n) :=
∑
d|n

1 (the number of divisors)

Generalizations: d

odd

(n), . . . in the same context.
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II. A NEW MULTIVARIATE MULTIPLICATIVE FUNCTION

Return to unrooted planar maps. Loosely speaking:

A+
0 (n) =

1

2n

(
A′
0(n) +

∑
ℓ≥2, ℓ|2n

ϕ(ℓ)Â′
0(n/ℓ)

)
A+
0 (n) := #(arbitrary non-isomorphic n-edge planar maps),

A′
0(n) := #(rooted n-edge planar maps),

Â′
0(n/ℓ) := #(rooted planar quotient maps) with respect to

rotations of order ℓ.

� What further for the torus and surfaces of greater genera?

The answer expected long ago: a similar reduction to rooted maps,

i.e. a summation formula in terms of

#(rooted quotient maps) with some coefficients.

With respect to all possible finite automorphisms of the surface.

� However: Which terms?? Which coefficients??
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Non-planar maps: basic enumeration theorem

A far-reaching generalization of the planar case!

Sγ: a closed oriented surface of genus γ ≥ 0.
A+
γ (n)=#(arbitrary unrooted maps with n edges on Sγ).

Theorem (A.Mednykh–R.Nedela, 2006). (Loosely)

A+
γ (n) =

1

2n

∑
ℓ|2n

∑
Ω∈Orb(Sγ/Cℓ)

Ω=Ω(g;m1,...,mr)

|Epio(π1(Ω), Cℓ)|
∑

#(rooted q.m.) . . .

• Orb(Sγ/Cℓ): the set of all cyclic orbifolds: quotient spaces by
orientation-preserving actions of the cyclic group Cℓ on Sγ.

• Orbifold Ω = Ω(g;m1, . . . ,mr) ∈ Orb(Sγ/Cℓ): a closed surface
with a distinguished finite set of branch points of signature
(g;m1, . . . ,mr), where g:= its genus,

mj:= the orders of branch points.
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Degression on rooted quotient maps

#(rooted quotient maps) in the RHS.

• Classes of generalized maps: with pendant semi-edges, etc.

• Easily reduce to ordinary rooted maps on orientable surfaces:
A′
δ(n), δ ≤ γ.

• Counted long ago with rather heavy formulae:
T.Walsh, A.Giorgetti.

� A great progress presently: much more efficient formulae,

numerical results,. . . Outside of our topic.
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Order preserving epimorphisms

A+
γ (n) =

1

2n

∑
ℓ|2n

∑
Ω∈Orb(Sγ/Cℓ)

Ω=Ω(g;m1,...,mr)

|Epio(π1(Ω), Cℓ)|
∑

#(rooted q.m.)

Epio(π1(Ω), Cℓ) :={order preserving epimorphisms π1(Ω) → Cℓ}.

The fundamental group:
π1(Ω) =

⟨
x1, y1, . . . , xg, yg, z1, . . . , zr :

g∏
i=1

[xi, yi]
r∏

j=1
zj = 1, z

mj
j = 1, j = 1, . . . , r

⟩

• Order preserving epimorphism π1(Ω) → Cℓ:
preserves the orders of the periodical generators zj, j = 1, . . . , r
(aka: smooth epimorphism, or
epimorphism with the torsion-free kernel).

� jEpi

o

(�

1

(
); C

`

)j=??
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Definition of the function E(m1, . . . ,mr)

Theorem [AM–RN, 2006]. For
Ω = Ω(g;m1, . . . ,mr) ∈ Orb(Sγ/Cℓ),

|Epio(π1(Ω), Cℓ)| = m2g · ϕ2g(ℓ/m) · E(m1, . . . ,mr)

� Again, �

2g

, the Jordan totient function of order 2g.

� E(m

1

; : : : ;m

r

) := the number of solutions of the system

x

1

+ � � �+ x

r

� 0 (mod `)

GCD(x

1

; `) = `=m

1

: : :

GCD(x

r

; `) = `=m

r

9

>

>

>

=

>

>

>

;

where LCM(m

1

; : : : ;m

r

) = m and mj`.

E(m

1

; : : : ;m

r

) does not depend on `.

� Later I investigated this function and suggested

to call it orbicyclic . It is a multivariate generalization

of the Euler totient function.
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Orbicyclic function: initial formula and elementary properties

Proposition [AM–RN]. For m := LCM(m1, . . . ,mr),

E(m1, . . . ,mr) =
1

m

m∑
k=1

cm1(k) · · · cmr(k)

E(∅) := 1 (m := 1 for r = 0)
where cn(k) is the famous Ramanujan (trigonometric) sum:

cn(k) :=
∑

d (mod n)
GCD(d,n)=1

exp
(
2 i k d

n

)

Inconvenient for calculations and study.

� E(m

1

; : : : ;m

r

) is symmetric.

� m

i

= 1 play no role. (m

1

; : : : ;m

r

) is called reduced if all m

j

> 1.

� E(m) = 0 for m > 1. E(m

1

;m

2

) = 0 for m

1

6= m

2

.

� E(m;m) = �(m) – just the coefficients in our formula for

counting planar maps!
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E(m1, . . . ,mr) =
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E(∅) := 1 (m := 1 for r = 0)
where cn(k) is the famous Ramanujan (trigonometric) sum:

cn(k) :=
∑

d (mod n)
GCD(d,n)=1

exp
(
2 i k d

n

)

Inconvenient for calculations and study.

• E(m1, . . . ,mr) is symmetric.
• mi = 1 play no role. (m1, . . . ,mr) is called reduced if all mj > 1.
• E(m) = 0 for m > 1. E(m1,m2) = 0 for m1 ̸= m2.
• E(m,m) = ϕ(m) – just the coefficients in our formula for
counting planar maps!
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Properties of the Ramanujan sum

Hölder’s formula:

cn(k) =
ϕ(n)

ϕ
(

n
GCD(k,n)

) µ( n

GCD(k, n)

)

• ϕ and µ again. Ramanujan’s identity:

cn(k) =
∑

d|GCD(k,n)

dµ

(
k

d

)

Lemma. cn(k) is multiplicative by n and for any p prime and a ≥ 1,

cpa(k) =


(p− 1)pa−1 if pa|k

−pa−1 if pa - k, pa−1|k
0 otherwise

• cn(k) is alternating. Unlike E(m1, . . . ,mr).
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Multivariate multiplicativity

A multivariate function g = g(m1, . . . ,mr) is called multiplicative if
g(1, . . . ,1) = 1 and

g(m1, . . . ,mr) = g(m′
1, . . . ,m

′
r) · g(m′′

1, . . . ,m
′′
r)

whenever mj = m′
jm

′′
j , j = 1, . . . , r, and GCD(M ′,M ′′) = 1, where

M ′ =
∏
jm

′
j and M ′′ =

∏
jm

′′
j .

Theorem [VL, 2010].

The orbicyclic function E(m

1

; : : : ;m

r

) is multiplicative.

� Thus: reduction to prime powers, i.e.

E(m

1

; : : : ;m

r

) is determined by its values

when m=GCD(m

1

; : : : ;m

r

) is a prime power.
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g(1, . . . ,1) = 1 and

g(m1, . . . ,mr) = g(m′
1, . . . ,m

′
r) · g(m′′

1, . . . ,m
′′
r)

whenever mj = m′
jm

′′
j , j = 1, . . . , r, and GCD(M ′,M ′′) = 1, where

M ′ =
∏
jm

′
j and M ′′ =

∏
jm

′′
j .

Theorem [VL, 2010].
The orbicyclic function E(m1, . . . ,mr) is multiplicative.

• Thus: reduction to prime powers, i.e.
E(m1, . . . ,mr) is determined by its values
when m=GCD(m1, . . . ,mr) is a prime power.
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The primary case m = p a. Main efficient formula

Introduce three parameters: r = rp, s = sp, v = vp.

For mj = paj , aj > 0, j = 1, . . . , r, without loss of generality,
a1 = . . . = a s = a > as+1 · · · ≥ a r > 0.

s := the multiplicity of the greatest exponent.

v :=
∑
j≥2

(aj − 1) =
∑
j≥1

aj − r − a+1

Theorem [VL, 2010].

E(p

a

1

; : : : ; p

a

r

) = (p� 1)

r�s+1

p

v

h

s

(p)

h

s

(x) is the (“chromatic” ) polynomial h

s

(x) :=

(x�1)

s�1

+(�1)

s

x

:

h

1

(x) = 0

h

2

(x) = 1

h

3

(x) = x� 2

h

4

(x) = x

2

� 3x+3

h

5

(x) = (x� 2)(x

2

� 2x+2)
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The primary case m = p a. Main efficient formula

Introduce three parameters: r = rp, s = sp, v = vp.

For mj = paj , aj > 0, j = 1, . . . , r, without loss of generality,
a1 = . . . = a s = a > as+1 · · · ≥ a r > 0.

s := the multiplicity of the greatest exponent.

v :=
∑
j≥2

(aj − 1) =
∑
j≥1

aj − r − a+1

Theorem [VL, 2010].

E(pa1, . . . , par) = (p− 1)r−s+1pvhs(p)

hs(x) is the (“chromatic” ) polynomial hs(x) := (x−1)s−1+(−1)s

x .

h1(x) = 0
h2(x) = 1
h3(x) = x− 2
h4(x) = x2 − 3x+3
h5(x) = (x− 2)(x2 − 2x+2)
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Further properties

• E(pa1, pa2, . . . , par) is non-negative and integer.

• E(pa1, pa2, . . . , par) vanishes iff s = 1 or p = 2 and s is odd.

• ϕ(m)|E(m1, . . . ,mr).

� f

r

(n) := E(n; : : : ; n

| {z }

r

) (the diagonal) is

the multiplicative function determined by

f

r

(p

a

) = (p� 1)p

(r�1)(a�1)

h

r

(p); p prime; a � 1:

One more generalization of the Euler totient function:

in particular f

2

(n) = �(n).

I called f

r

(n) (by certain historical reasons)

the Rademacher–Brauer totient.
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Further properties

• E(pa1, pa2, . . . , par) is non-negative and integer.

• E(pa1, pa2, . . . , par) vanishes iff s = 1 or p = 2 and s is odd.

• ϕ(m)|E(m1, . . . ,mr).

• fr(n) := E(n, . . . , n︸ ︷︷ ︸
r

) (the diagonal) is

the multiplicative function determined by

fr(p
a) = (p− 1)p(r−1)(a−1)hr(p), p prime, a ≥ 1.

One more generalization of the Euler totient function:
in particular f2(n) = ϕ(n).

I called fr(n) (by certain historical reasons)
the Rademacher–Brauer totient.
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Non-vanishing conditions for E(m1, . . . ,mr)

Recall: |Epio(π1(Ω), Cℓ)| = m2g · ϕ2g(ℓ/m) · E(m1, . . . ,mr)

Corollary. 1. An orbifold 
(g;m

1

; : : : ;m

r

); where all m

j

� 2;

exists and belongs to Orb(S




=C

`

); ` � 2; iff its parameters satisfy

the Riemann–Hurwitz condition 2� 2
 = `

�

2� 2g �

r

P

j=1

�

1�

1

m

j

�

�

and both �

2g

(`=m) and E(m

1

; : : : ;m

r

) do not vanish.

2. �

2g

(`=m) = 0 iff

(e1) m - ` [by definition, any f(n) := 0 for a non-integer argument] or

(e2) g = 0 and ` > m.

3. E(m

1

; : : : ;m

r

) = 0 iff

(e3) s

p

= 1 for some odd prime pjm or

(e4) 2jm and s

2

is odd. [s

2

:= the multiplicity of the highest 2-power]

� (e3) & (e4) are equivalent to Harvey’s conditions (1966) on

branching data of finite cyclic groups acting on Riemann surfaces.

Unexpected enumerative refinement.
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Recall: |Epio(π1(Ω), Cℓ)| = m2g · ϕ2g(ℓ/m) · E(m1, . . . ,mr)

Corollary. 1. An orbifold Ω(g;m1, . . . ,mr), where all mj ≥ 2,
exists and belongs to Orb(Sγ/Cℓ), ℓ ≥ 2, iff its parameters satisfy

the Riemann–Hurwitz condition 2− 2γ = ℓ
(
2− 2g −

r∑
j=1

(
1− 1

mj

))
and both ϕ2g(ℓ/m) and E(m1, . . . ,mr) do not vanish.
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Recall: |Epio(π1(Ω), Cℓ)| = m2g · ϕ2g(ℓ/m) · E(m1, . . . ,mr)

Corollary. 1. An orbifold Ω(g;m1, . . . ,mr), where all mj ≥ 2,
exists and belongs to Orb(Sγ/Cℓ), ℓ ≥ 2, iff its parameters satisfy

the Riemann–Hurwitz condition 2− 2γ = ℓ
(
2− 2g −

r∑
j=1

(
1− 1

mj

))
and both ϕ2g(ℓ/m) and E(m1, . . . ,mr) do not vanish.

2. ϕ2g(ℓ/m) = 0 iff
(e1) m - ℓ [by definition, any f(n) := 0 for a non-integer argument] or
(e2) g = 0 and ℓ > m.

3. E(m1, . . . ,mr) = 0 iff
(e3) sp = 1 for some odd prime p|m or
(e4) 2|m and s2 is odd. [s2:= the multiplicity of the highest 2-power]

• (e3) & (e4) are equivalent to Harvey’s conditions (1966) on
branching data of finite cyclic groups acting on Riemann surfaces.
Unexpected enumerative refinement.
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Toth’s summation formula

A compact number-theoretic representation:

Theorem [László Tóth, 2011].

E(m1, . . . ,mr) =
∑

d1|m1,...,dr|mr

d1 · · · dr
LCM(d1, . . . , dr)

µ
(m1

d1

)
· · ·µ

(mr

dr

)
.

Further generalizations . . .

[L.Tóth, 2014]: an explicit formula for the generalized average

Es = Es(m1, . . . ,mr) :=
1

ms+1

m∑
k=1

kscm1(k) · · · cmr(k)

(so that E0 = E).
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Concluding remark: what are (generalized) totients?

• A lot of arithmetic functions (and their families) are called
totients. Why? There is no generally accepted precise definition.

� Etymology: http://mathforum.org/kb/message.jspa?messageID=65511

J.Sylvester [1879] for Euler’s �: from Latin “totiens”�“that many”

(similarly to “quotiens”�“how many”). Totients are often enumerators.

� Tentative definition. An arithmetic function f(n) is called

a totient iff it is multiplicative and the values

f(p); f(p

2

); f(p

3

),. . .

form a geometric progression for each prime p.

� Suggested (in an equivalent form) by R.Vaidyanathaswamy

in the classical paper [The theory of multiplicative arithmetic

functions, Trans. AMS, 1931]. All totient functionds are such!

� It makes sense to restrict this definition: non-completely

multiplicative functions with non-negative integer values. . .
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J.Sylvester [1879] for Euler’s ϕ: from Latin “totiens”≈“that many”
(similarly to “quotiens”≈“how many”). Totients are often enumerators.

• Tentative definition. An arithmetic function f(n) is called
a totient iff it is multiplicative and the values

f(p), f(p2), f(p3),. . .

form a geometric progression for each prime p.

� Suggested (in an equivalent form) by R.Vaidyanathaswamy

in the classical paper [The theory of multiplicative arithmetic

functions, Trans. AMS, 1931]. All totient functionds are such!
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(similarly to “quotiens”≈“how many”). Totients are often enumerators.

• Tentative definition. An arithmetic function f(n) is called
a totient iff it is multiplicative and the values

f(p), f(p2), f(p3),. . .

form a geometric progression for each prime p.

• Suggested (in an equivalent form) by R.Vaidyanathaswamy
in the classical paper [The theory of multiplicative arithmetic
functions, Trans. AMS, 1931]. All totient functionds are such!
• It makes sense to restrict this definition: non-completely
multiplicative functions with non-negative integer values . . .
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